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The moiré superlattice has attracted growing interest in the electromagnetic and optical communities. Here,
we extend this concept to time-varying photonic systems by superposing two binary modulations on the
refractive index with different modulation periods, i.e., the moiré photonic time crystal (PTC). Such a moiré
PTC leads to extremely narrow bands in momentum space that support temporal localized modes, exhibiting
periodically self-reconstructing pulses in the time domain. We investigate the tunability of the band structure
of the moiré PTC and the temporal localization behavior, which can be greatly manipulated by varying the
temporal modulation parameters. Moreover, we explore the Floquet mode-locking mechanism in the moiré
PTC, which points toward potential applications in mode-locked lasers with a tunable time width of the
generated pulses. The modulation-induced extremely narrow band also offers intriguing opportunities in
exceptional-point-enhanced sensing. Our Letter brings the concept of moiré patterns to the field of PTCs, and
unveils new possibilities in wave manipulations with time-varying systems.
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The concept of moiré superlattices provides a new
degree of freedom in the design of photonic crystals
[1–3], which creates intriguing opportunities in wave
manipulations such as the localization of light fields [4–9],
moiré nanolaser arrays [10–12], tunable optical solitons
[13,14], and moiré bound states in the continuum [15,16].
With conventional photonic crystals, distributions of the
refractive index of materials are composed spatially in
periods. These crystals have a temporal counterpart, i.e.,
photonic time crystals (PTCs), in which interest has
been growing recently [17–19]. PTC systems hold spatial
homogeneity while being periodically modulated in the
time domain. Unlike a spatial photonic crystal that opens
band gaps in the energy axis, the temporal modulation in
PTCs causes the interference of time-refracted and time-
reflected waves, giving rise to Floquet modes and opening
band gaps in the momentum axis [20–24]. In particular,
such Floquet modes in the momentum band gaps of PTCs
support exponential growing (decaying) features [21–24]
due to the time-translation symmetry breaking from tem-
poral modulations, which hence violates energy conserva-
tion. Therefore, this naturally piques interest in the study of
the temporal analog of the spatial moiré superlattice, i.e.,
the moiré PTC. For example, the spatial moiré superlattice
supports flat bands with zero group velocity and leads to
spatial localization modes [25–27]. Correspondingly, it is
easy to expect that a moiré PTC shall support extremely
narrow bands with a giant group velocity and temporal

localized modes according to the space-time duality, which
has yet to be fully studied.
In this Letter, we theoretically study a moiré PTC by

considering the spatially uniform optical material under-
going the superposition of two binary modulations with
different modulation periods. Extremely narrow bands in
the momentum axis and the temporal localized modes are
explored, where we find that they support periodically self-
reconstructing pulses in time. The influence of the modu-
lation parameters on the narrowness of the bands and the
temporal width of the localized modes are investigated,
which points toward the important development of a
Floquet mode-locked lasing mechanism from the physics
of moiré PTCs. The modulation-induced extremely narrow
band also offers a new way to enhance the sensitivity
around exceptional points (EPs).
To construct a moiré PTC, we recall the formation of a

spatial one-dimensional (1D) moiré superlattice in Fig. 1(a)
by merging two 1D photonic crystals with different spatial
periods into a single layer. The moiré PTC is constructed in
a similar way by superposing two binary PTCs of different
time-varying refractive index patterns, n1ðtÞ and n2ðtÞ, at
modulation periods T1 and T2, respectively [see Fig. 1(b)].
Here, a modulation period of n1ðtÞ [n2ðtÞ] consists of two
time segments T1 (T2) with time durations τ1a (τ2a) and τ1b
(τ2b) for maximum (nmax) and minimum (nmin) values of
the refractive index, respectively. We set nmin ¼ 1 for the
simplicity; nmax ¼ nmin þ Δn, where Δn is the modulation
strength, and the filling ratio τ1a=T1 ¼ τ2a=T2 ¼ 0.5.
Moreover, we assume modulation periods for the two
binary PTCs satisfying T1=T2 ¼ N1=N2, where N1 and*Contact author: yuanluqi@sjtu.edu.cn
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N2 are coprime numbers. The resulting moiré PTC is then
governed by a spatially uniform but time-varying refractive
index, nðtÞ ¼ max½n1ðtÞ; n2ðtÞ�, with the temporal period
T ¼ N1T2 ¼ N2T1.
We study the band structure of moiré PTCs [see

Supplemental Material (SM) for method [28] ]. We take
a typical example of the moiré PTC [see Fig. 1(c)] with
parameters N1¼15, N2¼16, nmin¼1, nmax¼2 ðΔn ¼ 1Þ,
and plot the band structure in Fig. 2(a). One can see the
existence of an extremely narrow band (represented by
the violet line) in the vicinity of kn ¼ 10.8672k0 with a
superluminal group velocity, namely, the group velocity is

faster than the effective speed of light in the moiré PTC.
Here, k0 ≡ 2π=Tc, with c being the speed of light in
vacuum. Such an extremely narrow band originates from
the small mismatch between T1 and T2. Generally, a single
set of modulation n1ðtÞ produces sidebands from the
original bands of the effective static medium, and intro-
duces the coupling between different orders of sidebands,
therefore opening momentum band gaps [23,30]. When a
second set of modulation n2ðtÞ is introduced, the small
mismatch between T1 and T2 induces a severe folding of
bands and an extremely small frequency Brillouin zone,
resulting in the extremely narrow band [28]. Note that there
are also other narrow bands located at both sides of this
extremely narrow one with larger band widths. We clarify
that the superluminal group velocity does not violate
Einstein’s causality, the information velocity is never faster
than light (see Appendix A in the End Matter).
We then explore the modes of the moiré PTC with

momentum k residing away from the narrow band (gray
triangle), close to the narrow band (red triangle) and on the
narrow band (green triangle) labeled in Fig. 2(a), where
intensity distributions of the electric displacement field jDj2
with the temporal boundary condition DðtþTÞ¼DðtÞeiΩT
are plotted in Fig. 2(b) for one temporal period T. For the
mode located away from the narrow band, the distribution
of jDj2 is almost evenly distributed over the entire
modulation period T. In comparison, the mode located
close to the narrow band supports the field distribution
tending to localize at t ¼ 0; T. The temporal localization
behavior becomes stronger for the mode located in the
narrow band, exhibiting a periodically self-reconstructing
pulse in time [see the bottom panel of Fig. 2(b)], which is a
unique feature of the narrow band in a moiré PTC. We
further study the modes in the vicinity of the narrow band,
which is enlarged and plotted in Fig. 2(c). Three modes are
considered, where one is on the narrow band (gray circle)
and the other two are located at the momentum band gap
(red and green circles). The corresponding jDj2 are
displayed in Fig. 2(d), which all exhibit the temporal
localization behavior. More interestingly, as the two
modes in the momentum band gap hold the positive
(negative) imaginary eigenvalue, the field experiences the
exponential growing (decaying) feature during the evo-
lution, which will be shown in more detail in Fig. 4. Note
that for the band gap modes with k approaching the
middle of the momentum band gap, the temporal locali-
zation feature is gradually overshadowed by the growth
behavior of the momentum gap [28].
The modulation parameters in time-varying nðtÞ of

moiré PTCs can be tuned to influence the narrowness
of the band and the temporal localized modes. We first
fix N1 ¼ 15, N2 ¼ 16, nmin ¼ 1 and vary the modulation
strength Δn and plot the band structure as well as intensity
distributions of jDj2 in Figs. 3(a1) and 3(a2). Compared
with the band structure with Δn ¼ 1 in Fig. 2(a), one sees
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FIG. 1. Schematic illustration of the construction of a moiré
superlattice in (a) space domain and (b) time domain. (c) Modu-
lation pattern nðtÞ for a moiré PTC with N1 ¼ 15, N2 ¼ 16,
nmin ¼ 1, and nmax ¼ 2.
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FIG. 2. (a) Band structure of the moiré PTC with N1 ¼ 15,
N2 ¼ 16, nmax ¼ 2, and nmin ¼ 1, where the blue (yellow) lines
denote the real (imaginary) part of eigenvalues, i.e., ReðΩÞ
[ImðΩÞ]. (b) Intensity distributions of the electric displacement
field jDj2 for the modes denoted in (a). (c) Enlargement of the
band structure in (a) in the vicinity of the narrow band, where
δ ¼ 0.0048k0. (d) Intensity distributions of the electric displace-
ment field jDj2 for the modes denoted in (c), where solid (hollow)
circles denote ReðΩÞ [ImðΩÞ].
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the band structure with Δn ¼ 0.25, a weaker modulation
strength, in Fig. 3(a1) shows that the imaginary eigenvalue
ImðΩÞ becomes smaller and the width of the narrow band
near k ¼ 10k0 is wider, which indicates a weaker locali-
zation of the temporal localized mode. A larger modulation
strength Δn induces a stronger coupling between the
modulation-induced sidebands, therefore opening wider
momentum band gaps [21] and hence further compresses
the narrow bands, making the trend for the localization
of the temporal localized modes stronger, as presented in
Fig. 3(a2). The modulation pattern of the moiré PTC may
also lead to significant influence. In Figs. 3(b1) and 3(b2),
we fix N2 ¼ N1 þ 1 and tune the parameter N1. As N1

increases, which references a more complicated modulation
pattern, the bandwidth of the narrow band gets smaller and
the localization of the temporal localized modes becomes
stronger [see Figs. 2(a), 3(b1), and 3(b2)], which indicates
the trend of a narrower band resulting in the stronger
localization in the time domain. This can be explained by
the mismatch between T1 and T2. As the mismatch gets
smaller (i.e., increases N1 and fixes N2 ¼ N1 þ 1), a more
severe band folding in the frequency axis and a smaller
frequency Brillouin zone can be expected, which naturally
leads to a narrower band. However, this trend is not always
true, as we show in Figs. 3(c1) and 3(c2), where we fix
N1 ¼ 15 and change N2 (so the relation N2 ¼ N1 þ 1 is
breaking here). One finds that although increasing N2 gives
a more complicated modulation pattern and a narrower
band [see Fig. 3(c1) for N2 ¼ 19], the intensity distribution
jDj2 of the modes in Fig. 3(c2) are different from the ones
we have studied in previous cases. In other words, we find

that such moiré PTCs also have a magic configuration
inherited from the 1D spatial moiré superlattice [27,31,32],
where the width of narrow band can become extremely
small (a further discussion on the influence of the details
in modulation patterns is given in SM [28]). Moreover, the
shape of n1ðtÞ and n2ðtÞ can also slightly affect the narrow-
ness of the band and the temporal localization behavior [28].
We further explore the dynamics of the temporal

localized modes found in moiré PTCs with the band
structure in Fig. 4(a). In Fig. 4(b) we show numerical
results of the temporal evolution within five modulation
periods for three modes in the vicinity of the narrow band
that we have studied previously in Fig. 2(c). One finds that
the modes located at the narrow band (gray circle) and the
momentum band gap (red and green circles) both show a
periodically temporal localization behavior. This is par-
ticularly interesting for the modes located at the momentum
band gap, which are fundamentally different from the ones
in conventional binary PTCs [21,22,33,34] depending on
the ImðΩÞ of the mode. For the modes located at the
momentum band gap in a conventional binary PTC, the
growing (or decaying) modes always dominated during
the evolution. However, beside the globally exponential
growing (or decaying) trend, in each single modulation
period T, the intensity of the modes still monotonically
increases until it reaches its peak and then decreases,
exhibiting the clear localization feature. Moreover,
we investigate a mode-locking mechanism in such a
moiré PTC as a temporal analog of the one in a spatial
moiré superlattice where mode locking in momentum
space is exhibited [9], as illustrated in Fig. 4(c). For a

π

-π

0

R
e(

Ω
T)

(a1)

0

8

-8
020 10

k /k0

π

-π

00

8

-8
020 10

k /k0

(b1)
π

-π

0

(c1)

0

8

-8

Im
(Ω

T)

020 10

k /k0

N1=5Δn=0.25 N2=19

0

1

0

1

0

1

0 0.5 1

t /T

(a2)

|D
|2

N1=5

N1=10

N1=15

0

1

0

1

0

1

0 0.5 1

t /T

N2=16

N2=17

N2=19

0

1

0

1

0

1

0 0.5 1

t /T

Δn=0.25

Δn=0.5

Δn=1

)2c()2b(

FIG. 3. Band structure of the moiré PTC with (a1) N1=N2 ¼ 15=16 and Δn ¼ 0.25; (b1) N1=N2 ¼ 5=6, Δn ¼ 1; (c1)
N1=N2 ¼ 15=19, Δn ¼ 1. Intensity distributions of the electric displacement field jDj2 for the modes at the narrow bands (violet
lines) with (a2) N1=N2 ¼ 15=16 and various Δn; (b2) N2 ¼ N1 þ 1, Δn ¼ 1, and various N1; (c2) N1 ¼ 15, Δn ¼ 1, and various N2.
The shaded backgrounds in (a2) and (c2) represent the modulation pattern nðtÞ.
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single-frequency modulation n1ðtÞ with the modulation
frequency Ω1 [n2ðtÞ with Ω2], the Floquet modes are
delocalized in the time domain, and only the Floquet
modes with frequency spacing Ω1 can be coupled.
Nevertheless, once the modulation nðtÞ is introduced, the
Floquet modes with frequency spacing jΩ2 −Ω1j can also
be coupled with each other, which leads to the mode
locking in frequency space and the pulse localization in the
time domain (further illustration of the Floquet mode-
locking mechanism is given in SM [28]). We further verify
such a mode-locking mechanism by performing the
numerical simulation within 50 modulation periods. In
Fig. 4(d), we plot the saturated distribution of the density of
Floquet modes ηðφ;ξÞ¼ limΔφ→0ð

R
φþΔφ
φ jAðφ0;ξÞjdφ0Þ=Δφ.

Here, jAðφ0; ξÞj represents the summation of the amplitude
of the Floquet modes jAmj in the ξth modulation period,
which has a phase difference φ0 ¼ ArgðAmÞ − ArgðAmþ1Þ
between adjacent frequency components. Am is the mth
frequency component, extracted from DðtÞ in each modu-
lation period, where we can take t∈ ½ðξ − 1ÞT; ξT� and then
apply a Fourier transform. One sees the distribution ηðφ; ξÞ
is invariant at each phase difference during the evolution,
indicating a mode-locking signature hidden in moiré PTCs.
Therefore, the proposed moiré PTCs holds the potential for
developing novel thresholdless mode-locked lasers by
utilizing the modes located at the momentum band gaps
near the narrow band [e.g., red circle in Fig. 4(a)], which
extract energy from the temporal modulation instead of a
gain medium [21,22] and thus do not require external
pumping [35,36]. Moreover, the extremely narrow band
holds a large slope, resulting in very low density of states,
which can strongly suppress the spontaneous emission rate

of atoms or quantum emitters embedded inmoiré PTCs [22].
The time width of the generated pulses can also be changed
by varying the modulation pattern (see Appendix B).
Another interesting property of the extremely narrow

band is the EPs at the band edges. As we show in Fig. 5(a),
the two eigenvectors collapse at the two EPs denoted by the
red and blue stars in Fig. 4(a). Owning to the Nth-root
energy splitting around EPs, there has been considerable
interest in the study of EP-enhanced sensing [37,38]. One
typical method to further enhance the sensitivity around
EPs is to construct a higher-order EP [39]. Here, we show
another way to enhance the sensitivity through temporal
modulation, due to the effective control of the narrowness
of the band. We consider a monochromatic wave,
eiωet cos δωt, injected in a static medium, followed by a
finite modulation time of a moiré PTC. The momentum of a
monochromatic wave eiωet is set at the exceptional point.
The additional modulation cos δωt slightly shifts the
momentum of the wave, and hence it falls within the
momentum band gap of the moiré PTC, resulting in an
amplified output wave. By measuring the amplification
rate, one can detect such a small frequency shift δω.
In Figs. 5(c1)–5(e1), we show the output intensities of
the electric displacement field jDj2 after the modulation
of a moiré PTC with a temporal duration 30T, where
N2 ¼ N1 þ 1, and N1 ¼ 5, 10, 15, respectively. As N1

increases, jDj2 becomes larger. Moreover, the sensitivity
S ¼ ∂ðlog jDj2Þ=∂ðδωÞ is increased from ∼105 to ∼107
when N1 changes from 5 to 15 [see Figs. 5(c2)–5(e2)],
indicating a significant enhancement of sensitivity.
In summary, we theoretically explore moiré PTCs that

support extremely narrow bands and temporal localized
modes. The self-reconstructing temporal localized modes
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indicate the mode-locking mechanism in frequency space,
which points to the potential application of mode-locked
lasers with a tunable time width for the generated pulse.
Compared with previous works with temporal localization
behavior [21,40,41], our Letter provides a simpler strat-
egy, and thus enables new opportunities in wave manip-
ulations with time-varying systems. The extremely narrow
band induced by dynamical modulation also opens new
avenues in enhancing the sensitivity around EPs. In
particular, the dynamical feature and the absence of an
explicit gain medium in the proposed moiré PTC make it
possible for future weakening the fundamental quantum
and thermal noise compared to static EP sensors [42–44].
Recent progress in experiments shows new opportunities
in realizing the proposed moiré PTCs in various platforms
(see Appendix C). Our Letter provides a new direction
in wave manipulations with time-varying systems, which
may further extend to spatiotemporal media [45–51], leading
to localized modes in both space and time domains.

Note added—Related to and independent of our work, a
recent preprint [52] studying the superluminal propagation
of pulses in a photonic time moiré superlattice came to our
attention.
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End Matter

Appendix A: Superluminal group velocity and
information velocity—Here, we explain the physical
meaning of the superluminal group velocity and
information velocity, and why the proposed moiré PTC
does not violate Einstein’s causality. Generally, the group
velocity of a wave packet is defined by the moving speed
of its center, while the information velocity is defined by
the moving speed of its leading edge [54]. The group
velocity may exceed the speed of light, which can be
contributed from an increase in the local field by the
gain [55], but the information velocity cannot. One can
consider a simple scenario, where a truncated Gaussian
wave packet propagates in a medium. Here, the group
velocity corresponds to the motion of its peak, and the
information velocity corresponds to the motion of its
truncated edge. It has been shown that although the peak
can move faster than light, the leading edge always
moves at the speed of light. Once the peak of the wave
packet approaches its edge, it slows down and travels
almost exactly at the speed of light in the medium [40].

Appendix B: Tunable pulse width via dynamical
modulaiton—The proposed moiré PTCs can be used to
dynamically change the temporal width of the generated
pulses by varying modulation pattern, which provides a
reconfigurable method to generate mode-locking pulse
sequence. In Fig. 6, we illustrate two ways to change
the time width of the temporal localized mode in moiré
PTCs. In Fig. 6(a), we set nmax ¼ 3.19, nmin ¼ 1.595,
N1=N2 ¼ 10=11 for t∈ ½0; 4T�, and nmax ¼ 2, nmin ¼ 1,
N1=N2 ¼ 15=16 for t∈ ½4T; 8T�, where the
corresponding band structures ΩðkÞ and Ω0ðkÞ are shown

in the insets. For a second way shown in Fig. 6(b), we
set the same parameters as Fig. 6(a) for t∈ ½0; 1T� and
t∈ ½7T; 8T�, while varying nðtÞ, N1, and N2 linearly for
t∈ ½1T; 7T�. The temporal evolutions of the intensity
distribution jDj2 are shown in Figs. 6(a2) and 6(b2),
with initial and final distributions being presented in
Figs. 6(a3), 6(a4), 6(b3), and 6(b4), respectively, where
the momentum of the excited modes is denoted by the
red dashed line in Figs. 6(a1) and 6(b1). One can see that
the final time width of the temporal localized modes in
Figs. 6(a4) and 6(b4) are shortened compared with results
in Figs. 6(a3) and 6(b3). Although there is a difference
in the amplification ratio, one finds the manipulations of
the intensity distribution jDj2 under these two ways are
identical by comparing the results in Figs. 6(a4) and 6(b4).
Such time evolution can be understood by the state-
projection physical picture. As the system holds spatial
translational symmetry and breaks time-translation
symmetry, where the momentum of states is conserved, the
initial states on ΩðkÞ shall project to the final states on
Ω0ðkÞ with the same momentum k. Therefore, as long as
the band structures of the last modulation period in the
two ways are identical, the final intensity distribution jDj2
of the modes is the same.

Appendix C: Potential experimental platforms—
Because of the requirement of ultrafast temporal
modulation, realizing such moiré PTCs in an optical
regime is a nontrivial task [18,56–58]. Nevertheless, recent
experimental progress [58,59] in transparent conducting
oxides may enable new opportunities for experimental
demonstrations. In addition, the proposed constructions of
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moiré PTCs are not limited in photonic systems. A proof-
of-concept experiment may be feasible in different wave
systems, including water waves [60,61], electric circuits
and microwave systems [24,62–64], ultracold atoms [65],
acoustic waves [66], time-multiplexed networks [67,68],
and synthetic frequency dimensions [69,70]. For example,
in the microwave system [63,64], a microwave with a
carrier frequency ∼1 GHz and a modulation speed

∼0.1 ns are sufficient to generate the desired moiré
pattern, which can be achieved by commercially available
high-speed PIN photodiodes [64]. Moreover, experimental
observation of the extremely narrow band may need a
high resolution in the momentum axis. The inevitable
dissipation and noise can broaden the extremely narrow
band, which may be suppressed by applying on-chip
experimental platforms [71–73].
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FIG. 6. (a1),(b1) Modulation pattern of the moiré PTC for t∈ ½0; 8T�. Insets show the corresponding band structures for t∈ ½0; T� and
t∈ ½7T; 8T�, respectively. (a2),(b2) Intensity distributions of log jDj2 for the modulation patterns in (a1) and (b1), respectively. Intensity
distributions of jDj2 for (a3),(b3) t∈ ½0; T� and (a4),(b4) t∈ ½7T; 8T�, respectively. The dashed lines denote the envelope of jDj2.
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